Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298600

RESUMEN

Breast Cancer (BC) is one of the most common and challenging cancers among females worldwide. Conventional treatments for oral cancer rely on the use of radiology and surgery accompanied by chemotherapy. Chemotherapy presents many side effects, and the cells often develop resistance to this chemotherapy. It will be urgent to adopt alternative or complementary treatment strategies that are new and more effective without these negative effects to improve the well-being of patients. A substantial number of epidemiological and experimental studies reported that many compounds are derived from natural products such as curcumin and their analogs, which have a great deal of beneficial anti-BC activity by inducing apoptosis, inhibiting cell proliferation, migration, and metastasis, modulating cancer-related pathways, and sensitizing cells to radiotherapy and chemotherapy. In the present study, we investigated the effect of the curcumin-analog PAC on DNA repair pathways in MCF-7 and MDA-MB-231 human breast-cancer cell lines. These pathways are crucial for genome maintenance and cancer prevention. MCF-7 and MDA-MB-231 cells were exposed to PAC at 10 µM. MTT and LDH assays were conducted to evaluate the effects of PAC on cell proliferation and cytotoxicity. Apoptosis was assessed in breast cancer cell lines using flow cytometry with annexin/Pi assay. The expression of proapoptotic and antiapoptotic genes was determined by RT-PCR to see if PAC is active in programming cell death. Additionally, DNA repair signaling pathways were analyzed by PCR arrays focusing on genes being related and confirmed by quantitative PCR. PAC significantly inhibited breast-cancer cell proliferation in a time-dependent manner, more on MDA-MB-231 triple-negative breast cancer cells. The flow cytometry results showed an increase in apoptotic activity. These data have been established by the gene expression and indicate that PAC-induced apoptosis by an increased Bax and decreased Bcl-2 expression. Moreover, PAC affected multiple genes involved in the DNA repair pathways occurring in both cell lines (MCF-7 and MDA-MB231). In addition, our results suggest that PAC upregulated more than twice 16 genes (ERCC1, ERCC2, PNKP, POLL, MPG, NEIL2, NTHL1, SMUG1, RAD51D, RAD54L, RFC1, TOP3A, XRCC3, XRCC6BP1, FEN1, and TREX1) in MDA-MB-231, 6 genes (ERCC1, LIG1, PNKP, UNG, MPG, and RAD54L) in MCF-7, and 4 genes (ERCC1, PNKP, MPG, and RAD54L) in the two cell lines. In silico analysis of gene-gene interaction shows that there are common genes between MCF-7 and MDA-MB-321 having direct and indirect effects, among them via coexpression, genetic interactions, pathways, predicted and physical interactions, and shared protein domains with predicted associated genes indicating they are more likely to be functionally related. Our data show that PAC increases involvement of multiple genes in a DNA repair pathway, this certainly can open a new perspective in breast-cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Curcumina , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Curcumina/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Expresión Génica , Reparación del ADN , Antineoplásicos/farmacología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enzimas Reparadoras del ADN/genética
2.
Orphanet J Rare Dis ; 18(1): 80, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046296

RESUMEN

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS: This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS: Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS: Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.


Asunto(s)
Enfermedades Neurodegenerativas , Neurodegeneración Asociada a Pantotenato Quinasa , Ácido Tióctico , Humanos , Suplementos Dietéticos , Hierro/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/genética , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Neurodegeneración Asociada a Pantotenato Quinasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Tióctico/uso terapéutico , Ácido Tióctico/metabolismo
3.
Biochem Biophys Res Commun ; 643: 105-110, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36592583

RESUMEN

The 3'-phosphoadenosine-5'-phosphosulfate (PAPS) molecule is essential during enzyme-catalyzed sulfation reactions as a sulfate donor and is an intermediate in the reduction of sulfate to sulfite in the sulfur assimilation pathway. PAPS is produced through a two-step reaction involving ATP sulfurylase and adenosine 5'-phosphosulfate (APS) kinase enzymes/domains. However, archaeal APS kinases have not yet been characterized and their mechanism of action remains unclear. Here, we first structurally characterized APS kinase from the hyperthermophilic archaeon Archaeoglobus fulgidus, (AfAPSK). We demonstrated the PAPS production activity of AfAPSK at the optimal growth temperature (83 °C). Furthermore, we determined the two crystal structures of AfAPSK: ADP complex and ATP analog adenylyl-imidodiphosphate (AMP-PNP)/Mg2+/APS complex. Structural and complementary mutational analyses revealed the catalytic and substrate recognition mechanisms of AfAPSK. This study also hints at the molecular basis behind the thermal stability of AfAPSK.


Asunto(s)
Archaeoglobus fulgidus , Fosfotransferasas (Aceptor de Grupo Alcohol) , Archaeoglobus fulgidus/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfato Adenililtransferasa/química , Adenosina Fosfosulfato/química , Adenosina Fosfosulfato/metabolismo , Fosfoadenosina Fosfosulfato , Sulfatos/metabolismo , Adenosina Trifosfato/metabolismo
4.
Mol Metab ; 64: 101562, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944895

RESUMEN

OBJECTIVE: The mitochondrial nicotinamide adenine dinucleotide (NAD) kinase (MNADK) mediates de novo mitochondrial NADP biosynthesis by catalyzing the phosphorylation of NAD to yield NADP. In this study, we investigated the function and mechanistic basis by which MNADK regulates metabolic homeostasis. METHODS: Generalized gene set analysis by aggregating human patient genomic databases, metabolic studies with genetically engineered animal models, mitochondrial bioenergetic analysis, as well as gain- and loss- of-function studies were performed to address the functions and mechanistic basis by which MNADK regulates energy metabolism and redox state associated with metabolic disease. RESULTS: Human MNADK common gene variants or decreased expression of the gene are significantly associated with the occurrence of type-2 diabetes, non-alcoholic fatty liver disease (NAFLD), or hepatocellular carcinoma (HCC). Ablation of the MNADK gene in mice led to decreased fat oxidation, coincident with increased respiratory exchange ratio (RER) and decreased energy expenditure upon energy demand triggered by endurance exercise or fasting. On an atherogenic high-fat diet (HFD), MNADK-null mice exhibited hepatic insulin resistance and glucose intolerance, indicating a type-2 diabetes-like phenotype in the absence of MNADK. MNADK deficiency led to a decrease in mitochondrial NADP(H) but an increase in cellular reactive oxygen species (ROS) in mouse livers. Consistently, protein levels of the major metabolic regulators or enzymes were decreased, while their acetylation modifications were increased in the livers of MNADK-null mice. Feeding mice with a HFD caused S-nitrosylation (SNO) modification, a posttranslational modification that represses protein activities, on MNADK protein in the liver. Reconstitution of an SNO-resistant MNADK variant, MNADK-S193, into MNADK-null mice mitigated hepatic steatosis induced by HFD. CONCLUSION: MNADK, the only known mammalian mitochondrial NAD kinase, plays important roles in preserving energy homeostasis to mitigate the risk of metabolic disorders.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Proteínas Mitocondriales , Enfermedad del Hígado Graso no Alcohólico , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , NADP/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
5.
Orphanet J Rare Dis ; 17(1): 311, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945593

RESUMEN

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is one of the most widespread NBIA subtypes. It is caused by mutations in the gene of pantothenate kinase 2 (PANK2) that result in dysfunction in PANK2 enzyme activity, with consequent deficiency of coenzyme A (CoA) biosynthesis, as well as low levels of essential metabolic intermediates such as 4'-phosphopantetheine, a necessary cofactor for essential cytosolic and mitochondrial proteins. METHODS: In this manuscript, we examined the therapeutic effectiveness of pantothenate, panthetine, antioxidants (vitamin E and omega 3) and mitochondrial function boosting supplements (L-carnitine and thiamine) in mutant PANK2 cells with residual expression levels. RESULTS: Commercial supplements, pantothenate, pantethine, vitamin E, omega 3, carnitine and thiamine were able to eliminate iron accumulation, increase PANK2, mtACP, and NFS1 expression levels and improve pathological alterations in mutant cells with residual PANK2 expression levels. CONCLUSION: Our results suggest that several commercial compounds are indeed able to significantly correct the mutant phenotype in cellular models of PKAN. These compounds alone or in combinations are of common use in clinical practice and may be useful for the treatment of PKAN patients with residual enzyme expression levels.


Asunto(s)
Neurodegeneración Asociada a Pantotenato Quinasa , Liasas de Carbono-Azufre/uso terapéutico , Humanos , Hierro/metabolismo , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/uso terapéutico , Tiamina/uso terapéutico , Vitamina E
6.
J Ethnopharmacol ; 295: 115427, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35654350

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Danhe granule (DHG) is used by Chinese doctors to treat blood stasis, phlegm and dampness. Its lipid-lowering ability has been investigated in our previous research. However, the anti-liver inflammatory and fibrotic effects and mechanism of action of DHG in non-alcoholic steatohepatitis (NASH) have not been explored. AIM OF THE STUDY: To evaluate the ameliorative effects of DHG on liver inflammation and fibrosis in a methionine/choline-deficient (MCD) diet-induced NASH rat model, and its underlying mechanism. MATERIALS AND METHODS: Sprague-Dawley rats were fed an MCD diet for two weeks and then treated with or without DHG by oral gavage for eight weeks. Their body weight and liver index were measured. The serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities as well as the liver triglyceride (TG) and free fatty acid (FFA) levels were tested using reagent kits. Inflammatory cytokines, including Tnf-α, Il-ß and Il-6, and fibrosis genes, including Acta2, Col1a1, Col1a2 and Tgf-ß were examined by real-time quantitative PCR (RT-qPCR). Hematoxylin-eosin (H&E), Oil Red O, Masson's and Sirius Red staining were used to observe liver changes. The plasma and liver ceramide levels were analyzed using HPLC-QQQ-MS/MS. The expression of serine palmitoyl-CoA transferase (Spt), ceramide synthase 6 (Cers6), dihydroceramide desaturase 1 (Des1), glucosylceramide synthase (Gcs), and ceramide kinase (Cerk) mRNA was assayed by RT-qPCR, while the protein expression of CerS6, DES1, GCS, CerK, and casein kinase 2α (CK2α) was tested by western blotting (WB). CerS6 degradation was evaluated using a cycloheximide (CHX) assay in vitro. RESULTS: The liver index decreased by 20% in DHG groups and the serum ALT and AST decreased by approximately 50% and 30%, respectively in the DHG-H group. The liver Oil Red O staining, TG, and FFA changes showed that DHG reduced hepatic lipid accumulation by approximately 30% in NASH rats. H&E, Masson's and Sirius Red staining and the mRNA levels of Tnf-α, Il-ß, Il-6, Acta2, Col1a1, Col1a2 and Tgf-ß revealed that DHG alleviated liver inflammation and fibrosis in NASH rats. The ceramide (Cer 16:0), and hexosylceramide (HexCer 16:0, HexCer 18:0, HexCer 22:0, HexCer 24:0 and HexCer 24:1) levels decreased by approximately 17-56% in the plasma of the DHG-M and H rats. The Cer 16:0 content in the liver decreased by 20%, 50%, and 70% with the DHG-L, M, and H treatments; additionally, the dhCer 16:0, Cer 18:0, HexCer 18:0, HexCer 20:0 Cer 22:0-1P, Cer 24:0-1p, Cer 24:1-1p, and Cer 26:1-1p levels decreased in the DHG groups. The mRNA and protein expression levels of DES1, GCS, Cerk, CerS6, and CHX assay indicated that DHG decreased the mRNA and protein expression levels of CerK and reduced CerS6 protein expression by promoting its degradation. Additionally, DHG attenuated the protein expression of CK2α which could increase CerS6 enzymatic activity by phosphorylating its C-terminal region. CONCLUSION: DHG ameliorated the levels of liver FFA and TG and inflammation and fibrosis in MCD-induced rats, which were associated with decreasing ceramide species in the plasma and liver by reducing the expression levels of CerS6 and CerK.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Antiinflamatorios/farmacología , Ceramidas/metabolismo , Ceramidas/farmacología , Ceramidas/uso terapéutico , Fibrosis , Interleucina-6/metabolismo , Hígado , Cirrosis Hepática/metabolismo , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Esfingosina N-Aciltransferasa/metabolismo , Espectrometría de Masas en Tándem , Factor de Crecimiento Transformador beta/metabolismo , Triglicéridos , Factor de Necrosis Tumoral alfa/metabolismo
7.
Andrology ; 10(2): 404-418, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34674380

RESUMEN

BACKGROUND: The population with diabetes mellitus-induced erectile dysfunction is increasing rapidly, but current drugs are not effective in treating erectile dysfunction. Studies of the traditional Chinese medicine extract berberine on diabetes and its complications provide us with new ideas. OBJECTIVES: To evaluate the therapeutic effect and potential mechanism of berberine on the erectile function of diabetic rats. MATERIALS AND METHODS: Fifty male Sprague-Dawley rats were randomly grouped, and 42 rats were injected intraperitoneally with streptozotocin to establish a diabetes model. Erectile dysfunction rats were screened out through the apomorphine test and randomly divided into the diabetes mellitus and berberine groups, and these animals were administered berberine (200 mg/kg/day) and normal saline by gavage for 4 weeks. Primary corpus cavernous smooth muscle cells from healthy rats were cultured and treated with berberine. RESULTS: Fasting blood glucose in the diabetes mellitus group was significantly increased, while berberine showed no significant effect on glucose. Erectile function was obviously impaired in the diabetes mellitus group, and berberine administration partially rescued this impairment. The expression of sphingosine kinase 1, S1PR2, and sphingosine-1-phosphate in the diabetes mellitus group was increased. Berberine partially inhibited the expression of sphingosine kinase 1 and S1PR2, but the decrease in sphingosine-1-phosphate was not significant. Moreover, mitogen-activated protein kinase pathway factor expression was upregulated and eNOS activity was decreased in the diabetes mellitus group. Berberine treatment could partially reverse these alterations. Severe fibrosis and apoptosis were detected in diabetic rats, accompanied by higher expression of TGFß1, collagen I/IV, Bax/Bcl-2, and caspase 3 than in the other groups. However, supplementation with berberine inhibited the expression of these proteins and attenuated fibrosis and apoptosis. CONCLUSIONS: Berberine ameliorated erectile dysfunction in rats with diabetes mellitus, possibly by improving endothelial function and inhibiting apoptosis and fibrosis by suppressing the sphingosine kinase 1/sphingosine-1-phosphate/S1PR2 and mitogen-activated protein kinase pathways.


Asunto(s)
Berberina/farmacología , Diabetes Mellitus Experimental/complicaciones , Disfunción Eréctil/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Disfunción Eréctil/inducido químicamente , Lisofosfolípidos/metabolismo , Masculino , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ratas , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Estreptozocina
8.
Microb Cell Fact ; 20(1): 123, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187467

RESUMEN

BACKGROUND: Klebsiella pneumoniae is a bacterium that can be used as producer for numerous chemicals. Glycerol can be catabolised by K. pneumoniae and dihydroxyacetone is an intermediate of this catabolism pathway. Here dihydroxyacetone and glycerol were produced from glucose by this bacterium based a redirected glycerol catabolism pathway. RESULTS: tpiA, encoding triosephosphate isomerase, was knocked out to block the further catabolism of dihydroxyacetone phosphate in the glycolysis. After overexpression of a Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase (hdpA), the engineered strain produced remarkable levels of dihydroxyacetone (7.0 g/L) and glycerol (2.5 g/L) from glucose. Further increase in product formation were obtained by knocking out gapA encoding an iosenzyme of glyceraldehyde 3-phosphate dehydrogenase. There are two dihydroxyacetone kinases in K. pneumoniae. They were both disrupted to prevent an inefficient reaction cycle between dihydroxyacetone phosphate and dihydroxyacetone, and the resulting strains had a distinct improvement in dihydroxyacetone and glycerol production. pH 6.0 and low air supplement were identified as the optimal conditions for dihydroxyacetone and glycerol production by K, pneumoniae ΔtpiA-ΔDHAK-hdpA. In fed batch fermentation 23.9 g/L of dihydroxyacetone and 10.8 g/L of glycerol were produced after 91 h of cultivation, with the total conversion ratio of 0.97 mol/mol glucose. CONCLUSIONS: This study provides a novel and highly efficient way of dihydroxyacetone and glycerol production from glucose.


Asunto(s)
Dihidroxiacetona/metabolismo , Klebsiella pneumoniae/metabolismo , Dihidroxiacetona Fosfato/metabolismo , Ácidos Difosfoglicéricos/metabolismo , Fermentación , Genes Bacterianos , Glucosa/metabolismo , Gliceraldehído 3-Fosfato/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glicerol/metabolismo , Concentración de Iones de Hidrógeno , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crecimiento & desarrollo , Ingeniería Metabólica , Redes y Vías Metabólicas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Termodinámica
9.
EMBO J ; 40(16): e107247, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34031901

RESUMEN

Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Apicoplastos , Ácido Pantoténico/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética
10.
Science ; 372(6545): 968-972, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33888598

RESUMEN

The coenzyme nicotinamide adenine dinucleotide phosphate (NADP+) and its reduced form (NADPH) regulate reductive metabolism in a subcellularly compartmentalized manner. Mitochondrial NADP(H) production depends on the phosphorylation of NAD(H) by NAD kinase 2 (NADK2). Deletion of NADK2 in human cell lines did not alter mitochondrial folate pathway activity, tricarboxylic acid cycle activity, or mitochondrial oxidative stress, but rather led to impaired cell proliferation in minimal medium. This growth defect was rescued by proline supplementation. NADK2-mediated mitochondrial NADP(H) generation was required for the reduction of glutamate and hence proline biosynthesis. Furthermore, mitochondrial NADP(H) availability determined the production of collagen proteins by cells of mesenchymal lineage. Thus, a primary function of the mitochondrial NADP(H) pool is to support proline biosynthesis for use in cytosolic protein synthesis.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Prolina/biosíntesis , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico , Colágeno/metabolismo , Medios de Cultivo , Citosol/metabolismo , Femenino , Ácido Fólico/metabolismo , Técnicas de Inactivación de Genes , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Humanos , Metaboloma , Ratones , Ratones Desnudos , Proteínas Mitocondriales/genética , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
11.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-33859067

RESUMEN

Phytic acid or Myo-inositol hexakisphosphate is an essential compound for the rice plants. It remains in the form of phytate, a mixed salt of different mineral cations, in the seeds. The phytate breaks down during germination and provides the inorganic phosphorus and mineral ions to the seedlings. However, humans do not get the benefit of those essential ions from rice consumption due to the absence of phytase in the gut. We envisaged down-regulating ITPK, the gene behind the phytic acid biosynthesis so that its low amount would facilitate a greater amount of free mineral ions in the endosperm. Since there are six homologues of rice ITPK, we studied their expression in seeds. Additionally, we undertook an in-silico analysis of the homologous proteins. Considering the results, we selected ITPK-2 for its RNAi-mediated embryo-specific down-regulation to obtain the low phytate rice. We obtained a 37% reduction of phytic acid content accompanied by a nearly three-fold enhancement of inorganic phosphorus in the transgenic seeds. Additionally, the iron and zinc content increased in polished rice grains compared to the wild type. The results also showed that reduced phytic acid content did not affect the germination potential and seedling growth of the transgenic rice.


Asunto(s)
Grano Comestible/metabolismo , Oryza/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Fítico/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Grano Comestible/anatomía & histología , Germinación , Hordeum/genética , Inositol/metabolismo , Minerales/metabolismo , Oryza/anatomía & histología , Oryza/genética , Fósforo/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plantas Modificadas Genéticamente/anatomía & histología , Regiones Promotoras Genéticas , Interferencia de ARN
12.
Plant Signal Behav ; 16(1): 1844509, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33210985

RESUMEN

Nicotinamide adenine dinucleotide (NAD)/NAD phosphate (NADPH) is essential for numerous redox reactions and serve as co-factors in multiple metabolic processes in all organisms. NAD kinase (NADK) is an enzyme involved in the synthesis of NADP+ from NAD+ and ATP. Arabidopsis NADK2 (AtNADK2) is a chloroplast-localizing enzyme that provides recipients of reducing power in photosynthetic electron transfer. When Arabidopsis plants were grown on MS medium supplemented with 5 mM MgSO4, an AtNADK2-overexpressing line exhibited higher glutathione and total sulfur accumulation than control plants. Metabolomic analysis of major amino acids and organic acids using capillary electrophoresis-mass spectrometry demonstrated that overexpression of AtNADK2 affected a range of metabolic processes in response to MgSO4 supplementation.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Sulfato de Magnesio/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
13.
Cell Calcium ; 93: 102327, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316585

RESUMEN

Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , Señalización del Calcio , Desarrollo Embrionario , Inositol 1,4,5-Trifosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Defecación , Eliminación de Gen , Espacio Intracelular/metabolismo , Mutación/genética , Especificidad de Órganos , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química
14.
Cancer Control ; 27(1): 1073274820976664, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33317322

RESUMEN

Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors' therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis/patología , Neoplasias/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Lisofosfolípidos/metabolismo , Neoplasias/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
15.
J Comput Aided Mol Des ; 34(10): 1091-1103, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32601839

RESUMEN

Herein, the LASSBio Chemical Library is presented as a valuable source of compounds for screening to identify hits suitable for subsequent hit-to-lead optimization stages. A feature of the LASSBio Chemical Library worth highlighting is the fact that it is a smart library designed by medicinal chemists with pharmacological activity as the main priority. The great majority of the compounds part of this library have shown in vivo activity in animal models, which is an indication that they possess overall favorable bioavailability properties and, hence, adequate pharmacokinetic profiles. This, in turn, is supported by the fact that approximately 85% of the compounds are compliant with Lipinski's rule of five and ca. 95% are compliant with Veber's rules, two important guidelines for oral bioavailability. In this work it is presented a virtual screening methodology combining a pharmacophore-based model and an empirical Gibbs free energy-based model for the ligand-protein interaction to explore the LASSBio Chemical Library as a source of new hits for the inhibition of the phosphatidylinositol 4-kinase IIIß (PI4KIIIß) enzyme, which is related to the development of viral infections (including enteroviruses, SARS coronavirus, and hepatitis C virus), cancers and neurological diseases. The approach resulted in the identification of two hits, LASSBio-1799 (7) and LASSBio-1814 (10), which inhibited the target enzyme with IC50 values of 3.66 µM and IC50 and 6.09 µM, respectively. This study also enabled the determination of the structural requirements for interactions with the active site of PI4KIIIß, demonstrating the importance of both acceptor and donor hydrogen bonding groups for forming interactions with binding site residues Val598 and Lys549.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sitios de Unión , Dominio Catalítico , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
16.
Theranostics ; 10(17): 7906-7920, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685028

RESUMEN

Background: Capsaicin is an active compound found in plants of the Capsicum genus; it has a range of therapeutic benefits, including anti-tumor effects. Here we aimed to delineate the inhibitory effects of capsaicin on nasopharyngeal carcinoma (NPC). Methods: The anti-cancer effects of capsaicin were confirmed in NPC cell lines and xenograft mouse models, using CCK-8, clonogenic, wound-healing, transwell migration and invasion assays. Co-immunoprecipitation, western blotting and pull-down assays were used to determine the effects of capsaicin on the MKK3-p38 axis. Cell proliferation and EMT marker expression were monitored in MKK3 knockdown (KD) or over-expression NPC cell lines treated with or without capsaicin. Finally, immunohistochemistry was performed on NPC specimens from NPC patients (n = 132) and the clinical relevance was analyzed. Results: Capsaicin inhibited cell proliferation, mobility and promoted apoptosis in NPC cells. Then we found that capsaicin directly targets p38 for dephosphorylation. As such, MKK3-induced p38 activation was inhibited by capsaicin. Furthermore, we found that capsaicin-induced inhibition of cell motility was mediated by fucokinase. Xenograft models demonstrated the inhibitory effects of capsaicin treatment on NPC tumor growth in vivo, and analysis of clinical NPC samples confirmed that MKK3 phosphorylation was associated with NPC tumor growth and lymphoid node metastasis. Conclusions: The MKK3-p38 axis represents a potential therapeutic target for capsaicin. MKK3 phosphorylation might serve as a biomarker to identify NPC patients most likely to benefit from adjunctive capsaicin treatment.


Asunto(s)
Capsaicina/farmacología , MAP Quinasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Animales , Capsaicina/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , MAP Quinasa Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Chin J Nat Med ; 18(4): 308-320, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32402408

RESUMEN

Osthole is observed to have the capacity to treat pulmonary arterial hypertension (PAH) in rats, but molecular mechanism is still unknown. The present study aims to discover therapeutic targets and explore therapeutic mechanism of osthole against PAH from metabolic perspective. A rat model with PAH was successfully established with MCT, following osthole administration, then untargeted metabolomics assay was performed using UPLC-Q-TOF-MS to identify differential metabolites and associated metabolic pathways, at last mechanism investigation was done by qRT-PCR, Western blot and ELISA. Differential metabolites characterized in rats with PAH were mostly assigned to sphingolipid metabolism, synthesis of unsaturated fatty acids, glycolysis, nucleotide metabolism, steroid hormone biosynthesis. Furthermore, osthole reversed high level of S1P by modulating metabolic enzyme Sphk1 in rats with PAH. In addition, osthole inhibited the expression of Sphk1 by downregulating microRNA-21, phosphorylation of Akt, phosphorylation of mTOR in vivo and in vitro. These results demonstrated that metabolomics is a promising approach to discover potential drug target for PAH treatment. Importantly, our findings further elucidated therapeutic mechanism of osthole, a natural product, having a role of metabolic regulator to potentially treat PAH by targeting inhibition of Sphk1/S1P via microRNA-21-PI3K/Akt/mTOR signal pathway. Altogether, this discovery paves a critical foundation for enabling osthole to be a candidate compound to treat PAH.


Asunto(s)
Cumarinas/farmacología , Lisofosfolípidos/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Esfingosina/análogos & derivados , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Masculino , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Esfingosina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
18.
Proc Natl Acad Sci U S A ; 117(17): 9613-9620, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284406

RESUMEN

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.


Asunto(s)
Cloroplastos/microbiología , Regulación de la Expresión Génica de las Plantas/inmunología , Luz , Proteínas NLR/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Agrobacterium/metabolismo , Animales , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Silenciador del Gen , Microscopía Confocal , Proteínas NLR/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Plantas/genética , Plantones , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología , Técnicas del Sistema de Dos Híbridos
19.
Curr Genet ; 66(4): 765-774, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32125494

RESUMEN

Pyricularia oryzae is the causal agent of blast disease on staple gramineous crops. Sulphur is an essential element for the biosynthesis of cysteine and methionine in fungi. Here, we targeted the P. oryzae PoMET3 encoding the enzyme ATP sulfurylase, and PoMET14 encoding the APS (adenosine-5'-phosphosulphate) kinase that are involved in sulfate assimilation and sulphur-containing amino acids biosynthesis. In P. oryzae, deletion of PoMET3 or PoMET14 separately results in defects of conidiophore formation, significant impairments in conidiation, methionine and cysteine auxotrophy, limited invasive hypha extension, and remarkably reduced virulence on rice and barley. Furthermore, the defects of the null mutants could be restored by supplementing with exogenous cysteine or methionine. Our study explored the biological functions of sulfur assimilation and sulphur-containing amino acids biosynthesis in P. oryzae.


Asunto(s)
Ascomicetos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfato Adenililtransferasa/metabolismo , Ascomicetos/efectos de los fármacos , Cisteína/metabolismo , Cisteína/farmacología , Eliminación de Gen , Hordeum/microbiología , Hifa/patogenicidad , Hifa/fisiología , Metionina/metabolismo , Metionina/farmacología , Mutación , Oryza/microbiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas , Sulfato Adenililtransferasa/genética , Virulencia
20.
Nat Commun ; 11(1): 867, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054832

RESUMEN

Alzheimer's disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-ß peptides (Aß) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of Aß42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce Aß42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and α-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of Aß42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Mononucleótido de Flavina/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Genes Sintéticos , Genoma Fúngico , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Genéticos , Mutación , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Pliegue de Proteína , Proteolisis , RNA-Seq , Riboflavina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA